Semi-topological K-homology and Thomason’s Theorem
نویسنده
چکیده
In this paper, we introduce the “semi-topological K-homology” of complex varieties, a theory related to semi-topological K-theory much as connective topological K-homology is related to connective topological K-theory. Our main theorem is that the semi-topological K-homology of a smooth, quasiprojective complex variety Y coincides with the connective topological Khomology of the associated analytic space Y an. From this result, we deduce a pair of results relating semi-topological K-theory with connective topological K-theory. In particular, we prove that the “Bott inverted” semi-topological K-theory of a smooth, projective complex variety X coincides with the topological K-theory of Xan. In combination with a result of Friedlander and the author [12, 3.8], this gives a new proof, in the special case of smooth, projective complex varieties, of Thomason’s celebrated theorem that “Bott inverted” algebraic K-theory with Z/n coefficients coincides with topological K-theory with Z/n coefficients.
منابع مشابه
Thomason’s Theorem for Varieties over Algebraically Closed Fields
We present a novel proof of Thomason’s theorem relating Bott inverted algebraic K-theory with finite coefficients and étale cohomology for smooth varieties over algebraically closed ground fields. Our proof involves first introducing a new theory, which we term algebraic K-homology, and proving it satisfies étale descent (with finite coefficients) on the category of normal, Cohen-Macaulay varie...
متن کاملLocalization Theorems in Topological Hochschild Homology and Topological Cyclic Homology
We construct localization cofiber sequences for the topological Hochschild homology (THH) and topological cyclic homology (TC) of spectral categories. Using a “global” construction of the THH and TC of a scheme in terms of the perfect complexes in a spectrally enriched version of the category of unbounded complexes, the sequences specialize to localization cofiber sequences associated to the in...
متن کاملTopological K-theory of Algebraic K-theory Spectra
One of the central problems of algebraic K-theory is to compute the K-groups KX of a scheme X. Since these groups are, by definition, the homotopy groups of a spectrum KX, it makes sense to analyze the homotopy-type of the spectrum, rather than just the disembodied homotopy groups. In addition to facilitating the computation of the K-groups themselves, knowledge of the spectrum KX can be applie...
متن کاملar X iv : m at h / 06 08 72 0 v 1 [ m at h . D S ] 2 9 A ug 2 00 6 TOPOLOGICAL ENTROPY AND PARTIALLY HYPERBOLIC DIFFEOMORPHISMS
We consider partially hyperbolic diffeomorphisms on compact manifolds where the unstable and stable foliations stably carry some unique nontrivial homologies. We prove the following two results: if the center foliation is one dimensional, then the topological entropy is locally a constant; and if the center foliation is two dimensional, then the topological entropy is continuous on the set of a...
متن کاملGeometric Cycles, Index Theory and Twisted K-homology
We study twisted Spin-manifolds over a paracompact Hausdorff space X with a twisting α : X → K(Z, 3). We introduce the topological index and the analytical index on the bordism group of α-twisted Spin-manifolds over (X,α), taking values in topological twisted K-homology and analytical twisted K-homology respectively. The main result of this paper is to establish the equality between the topolog...
متن کامل